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Abstract
A new analytic bond-order potential for iron is presented that has been fitted to
experimental data and results from first-principles calculations. The angular-
dependent functional form allows a proper description of a large variety of
bulk, surface and defect properties, including the Bain path, phonon dispersions,
defect diffusivities and defect formation energies. By calculating Gibbs free
energies of body-centred cubic (bcc) and face-centred cubic (fcc) iron as a
function of temperature, we show that this potential is able to reproduce the
transitions from α-iron to γ -iron and δ-iron before the melting point. The
results are compared to four widely used embedded-atom-method potentials
for iron.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Atomic-scale simulations are nowadays a standard tool in condensed matter physics, chemistry
and materials science. They enable a detailed investigation of material processes and
phenomena with atomic resolution. The outcome of atomistic simulations is, however, largely
dependent on a realistic description of the interatomic interactions. Quantum-mechanical codes
based on first-principles methods, like density-functional theory (DFT), have become widely
available over the last decade, but they are computationally demanding and therefore limited
to small system sizes. Simulations of extended systems on long timescales are therefore only
possible if interatomic potentials are used. These are computationally more efficient, because
the electronic degrees of freedom are not explicitly treated and the energy of a system is
solely described by the positions of the constituent atoms. In the hierarchy of modelling
techniques, atomistic simulations with analytic interatomic potentials close the gap between
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self-consistent quantum-mechanical calculations and coarse-grained methods based on quasi-
particle or continuum models. In the realm of metallic materials the embedded-atom method
(EAM) [1] and its variants [2, 3] have been successfully applied for describing materials
properties of various d transition metals. Modelling of magnetic materials, including iron, has,
however, remained a true challenge. Iron exhibits a phase transition between bcc α-iron and
fcc γ -iron at T αγ

c = 1184 K, and a transition back to the bcc phase (δ-iron) at T γ δ
c = 1665 K

before melting [4]. The origin of these phase transitions is well understood [5]: the contribution
of ferromagnetic energy to the total energy of the bcc phase stabilizes α-iron over γ -iron at
low temperatures. Also, the degrees of freedom of the magnetic spins represent the decisive
contributions to the entropies of the bcc and fcc phases, leading to the α to γ transition at
T αγ

c and γ to δ transition at T γ δ
c , while the vibrational contributions to the entropy are only of

secondary importance.
In molecular dynamics (MD) simulations, however, where the classical trajectories of

atoms are calculated, the dynamics of the electronic subsystem is missing. Therefore it is
conceptually challenging to model phase transitions, where spin contributions become decisive,
by MD simulations.

In the past, a large variety of interatomic potentials for Fe and some of its alloys
have been proposed [6–12], most of them relying on a central force description. Angular-
dependent potentials were developed within the modified EAM [13], the embedded-defect
method (EDM) [14] and the angular-dependent potential method (ADP) [15], which allow
an improved description of a number of properties as compared to standard EAM potentials.
Interestingly, to the best of our knowledge transitions between the α- and γ -phases have only
been considered in pure iron in [9] and in the context of martensite–austenite transitions in
Fe–Ni alloys [8]. Recently, Dudarev and Derlet [11] proposed a potential in which magnetic
contributions are included via a Stoner model. They present two separate parameterizations of
their potential for magnetic and non-magnetic iron phases, but do not address the problem of
how to switch from one to the other with increasing temperature.

In this paper, we introduce a new angular-dependent analytic bond-order potential (ABOP)
for iron, which reproduces the α–γ –δ–liquid phase sequence. The functional form of
this potential has been successfully applied for modelling other transition metals, including
platinum [16] and bcc tungsten, as well as tungsten carbide [17] and various other compounds,
before (see e.g. [18]).

In case of iron, the Gibbs free energy difference between the bcc phase and the fcc phase
is dominated by energy and entropy contributions of the spin system. The key idea of our
approach is to mimic this difference by lattice energy and phonon contributions, only. This
is done by adjusting the lattice energy difference of the bcc and fcc phases in a way that the
calculated Gibbs free energies cross at the desired temperatures. The potential thus obtained is
then applicable for problems in which the bcc–fcc transition is of importance. This interatomic
potential, in a sense, counterbalances the fact that electronic degrees of freedom are missing in
classical molecular dynamics simulations.

In addition, we provide a thorough comparison of the ABOP with four established iron
potentials, including the EAM potential by Simonelli et al (potential ‘A’ in [6]), the Fe part
of the Fe–Cu potential by Ackland et al [7], the Mendelev et al potential (parameterization II)
[10] and the ‘magnetic’ potential of case study II of Dudarev and Derlet [11].

The paper is organized as follows. First, we describe the fitting procedure of this new
potential and the total-energy calculations carried out for extending the database. Then various
bulk properties are compared, including phonon dispersions and the Bain path. The next
section addresses melting properties and calculations of Gibbs free energies for bcc and fcc
iron. Finally, point defect properties will be discussed before the paper is concluded.
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2. Development of a bond-order potential for bcc and fcc iron

2.1. Bond-order formalism

The functional form of the potential is summarized briefly by the following equations. The
total energy is written as a sum over individual bond energies:

E =
∑

i< j

f c
i j(ri j)

[
V R

i j (ri j) − bi j + b ji

2
V A

i j (ri j )

]
. (1)

The pair-like repulsive and attractive terms are taken as Morse-like pair potentials:

V R(r) = D0

S − 1
exp

(
−β

√
2S(r − r0)

)
,

V A(r) = SD0

S − 1
exp

(
−β

√
2/S(r − r0)

)
.

(2)

Here, S is an adjustable parameter, while D0 denotes the dimer bond energy and r0 the dimer
bond length. The parameter β can be determined from the ground-state oscillation frequency
of the dimer. The interaction range is determined by the cut-off function:

f c(r) =

⎧
⎪⎪⎨

⎪⎪⎩

1, r � R − D,
1

2
− 1

2
sin

(
π

2
(r − R)/D

)
, |R − r | � D,

0, r � R + D

(3)

where R and D are adjustable parameters. Three-body contributions and angularity enter the
energy function via the bond-order parameter bi j :

bi j = (1 + χi j)
− 1

2 , (4)

χi j =
∑

k �=i, j

f c
ik(rik)gik(θi jk) exp[2μik(ri j − rik)]. (5)

The indices monitor the type-dependence of the parameters, which is important for describing
compound systems. The angular dependence is described by

g(θ) = γ

(
1 + c2

d2
− c2

d2 + [h + cos θ ]2

)
, (6)

as originally proposed for sp-valent materials. By carefully adjusting the shape and minimum
position, this functional form can also be applied for d transition metals [16, 17].

2.2. General fitting procedure

The general fitting methodology employed in the present work has already been described
in detail before [16, 18, 17]. In short, to achieve a high transferability, the aim is to match
the properties of the potential with an extensive database of values obtained from experiment
and first-principles calculations. The complete set of reference data is divided into a fitting
and a testing database [19, 20]. The fitting database encompasses structural properties like
bond lengths, cohesive energies and elastic constants of structures covering the coordination
range from the dimer up to the 12-fold coordinated close-packed fcc and hcp (hexagonal close-
packed) structures. Starting from an initial guess, the potential parameters are optimized by
adjusting the properties predicted by the potential to the values contained in the fitting database
using a conjugate gradient least-squares minimization algorithm as implemented in the program
PONTIFIX [21]. Subsequently, the quality of a parameter set, which has been identified as a good
fit in this first step, is evaluated by comparing to the testing database. This database comprises
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data on point defects like vacancies and interstitial formation energies, and two-dimensional
defects such as surface and interface energies. Furthermore, thermal properties like the melting
temperature and transitions between solid phases are also included. This procedure allows
one to identify regions of parameter space where the potential shows a high transferability.
Promising parameter sets can be used as a new starting point in the minimization algorithm. In
iterating the fitting and testing steps, one eventually proceeds towards a parameterization that
shows an overall satisfactory behaviour regarding the complete set of reference data.

2.3. Total-energy calculations

As described above, the transferability of the bond-order potential developed in this work
crucially depends on an extensive fitting database covering a variety of differently coordinated
structures. The experimental data available in literature are naturally constricted to phases
that are accessible in experiments, like the ground-state bcc phase or the high-temperature fcc
phase. For structures that do not appear in the phase diagram, density functional theory (DFT)
calculations are carried out in order to fill the fitting database with the required properties.

The DFT calculations were performed using the Vienna ab initio simulation package
VASP [22] employing the projector-augmented wave (PAW) method [23, 24]. The generalized
gradient approximation (GGA) was used in the parameterization by Perdew and Wang
(PW91) [25]. The plane-wave cut-off energy was set to 348.3 eV. The number of k-points
in the irreducible Brillouin zone was chosen to guarantee a convergence of the total energy
better than 1 meV/atom. Typical values are 220 k-points for the bcc and fcc structures.

Total energies have been calculated for Fe in the fcc, hcp, bcc, sc (simple cubic) and
diamond structures. For each structure, the minimum energy, lattice constant, bulk modulus
and pressure derivative of the bulk modulus were determined by fitting the energy–volume
data to the Birch–Murnaghan equation of state [26]. For the hcp structure, the c/a ratio was
identified by calculating energy–volume curves for different fixed c/a ratios and subsequently
fitting a second-order polynomial to the energy minima. The results of the calculations are
summarized in table 2.

For identifying the magnetic ground state of a structure, non-spin-polarized (non-magnetic,
NM) as well as spin-polarized calculations with ferromagnetic (FM) and anti-ferromagnetic
(AFM) alignment of the atomic spins were performed. The magnetic ground states are found
to be NM for the diamond structure, FM for simple cubic, FM for bcc, AFM for fcc and NM
for hcp. As shown in figure 1, the calculations furthermore reveal the existence of two FM
states in fcc Fe, namely a high-spin, high-volume (HS) and a low-spin, low-volume (LS) state
separated from the AFM state by 45 meV and 29 meV, respectively. The results on bcc, fcc
and hcp Fe are in qualitative agreement with ab initio calculations from Entel et al [27, 28].
Experimental evidence for the AFM ground state of γ -Fe and the existence of the FM HS state
is summarized in [29]. The energy difference between FM bcc Fe and AFM fcc Fe calculated
by this method is 0.11 eV/atom.

For bcc and fcc Fe, the complete set of second-order elastic constants has been calculated.
For this purpose, the deformation energy of the system was analysed in response to different
deformation modes (see table 2). The GGA calculations provide an overall good description
of the elastic properties of bcc iron, with a bulk modulus being however 12% larger than the
reference value of 169 GPa and a somewhat too low c44 elastic constant. The significance of the
experimentally determined elastic constants of γ -iron for comparison with the results from DFT
calculations is only limited. Since the experimental values were obtained at 1428 K, a softening
of the elastic constants with respect to the 0 K calculations can be expected. A deviation of the
DFT results towards higher values is therefore reasonable. Furthermore, in agreement with
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Figure 1. Comparison of energy–volume curves at 0 K for FM bcc Fe and fcc Fe in different
magnetic states as obtained from DFT calculations described in this work. Energies are relative to
the FM bcc ground state.

the ground state of γ -iron, an anti-ferromagnetic alignment of spins was assumed in the DFT
calculations. At the temperature of the experimental measurement, the magnetic ordering is,
however, not preserved and its influence on the elastic constants cannot be assessed.

The DFT data represent a complement to the available experimental data in the fitting
database. However, this introduces the problem that structural properties like the bond lengths
obtained from DFT calculations can deviate from experimental values simultaneously used in
the fitting database. In order to obtain a consistent input data set, all atomic volumes obtained
by DFT were scaled by a factor 1.03 that matches the volume of the bcc ground state to the
experimental volume.

2.4. Fitting of the Fe potential

For the sake of computational efficiency, it is generally desirable to keep the cut-off radius as
small as possible, reducing it to nearest-neighbour interactions only. However, the difference
in bond length between the nearest and second-nearest neighbours in the bcc structure is very
small, and positioning the cut-off function between the two distances can lead to unpredictable
cut-off effects. The cut-off radius of the ABOP was therefore chosen in a way that second-
nearest neighbours are included for the bcc structure, but are excluded for the fcc structure.
(This approach has previously proven useful for describing tungsten [17].)

One quantity that proved to be decisive for the performance of the potential is the parameter
h determining the position of the minimum in the angular function g(θ) (see (6)). Atomic
configurations exhibiting angles close to this minimum possess a higher bond order than
configurations with angles lying outside the minimum. Careful selection of the range of h
therefore easily allows one to energetically favour the bcc structure over the close-packed fcc
and hcp structures. As shown in figure 2, the dominating nearest-neighbour angles on a bcc
lattice are 70.5◦ and 107.5◦, which appear in figure 2 at positions +1/3 and −1/3. In contrast,
the fcc lattice exhibits angles of 60◦, 90◦ and 120◦, corresponding to positions 1/2, 0 and −1/2.
A selection of h with |h| in the vicinity of 1/3 therefore allows one to create potentials where
the bcc structure has a lower energy than the close-packed structures.

However, positioning the minimum of g(θ) exactly on or too close to an angle appearing
in a structure often deteriorates the elastic properties. In this case, the fitting routine is prone to
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Figure 2. Angular function g(θ) of the Fe potential. Angles appearing in different structures are
indicated by vertical lines. The height of a line is proportional to the weight of the angle in the
respective structure. The angles are shifted slightly so that structures having identical angles can be
distinguished.

the risk of stabilizing the structure by a minimum in the energy landscape arising solely from
the presence of the selected angle, which leads to large restoring forces when moving the atoms
away from their equilibrium positions by shear deformations. Poor elastic constants (a too high
c44) are also found for |h| � 1/3. These considerations restrict the range of |h| to values close
to, but lower than, 0.3.

Changing the sign of the parameter h alters the static properties of the bcc phase only
slightly, since, apart from the 180◦ angle, the angles appearing in the bcc structure are
symmetrically distributed around cos(θ) = 0. Parameter sets with a positive h around 0.3
show, however, unrealistically low melting temperatures at approximately 1000 K. For this
reason, the parameter h has to be restricted to negative values.

Another restriction applies to the parameter 2μ. During the fitting procedure, it was found
that the fcc Fe phase becomes thermally instable for 2μ > 0. It turned out that although the
fcc structure is a local minimum in the potential energy landscape, the fcc phase spontaneously
transforms into a twinned bcc structure at non-zero temperatures sometimes as low as 200 K.
In contrast, the thermal stability of the fcc Fe phase is maintained with parameter sets having
very low values for 2μ. This parameter has therefore been restricted zero.

During the fitting process, incompatibilities between two desired properties can appear,
i.e. fitting exactly to one property results in a bad performance of the potential for the other
property. In some cases, this problem can be circumvented by restarting the fitting process in
another region of parameter space. However, for the Fe potential an incompatibility between
the correct dimer bond length and realistically high surface energies could not be resolved.
Fixing the dimer bond length at the experimental value of 2.0 Å results in very low surface
energies, a finding that holds true for the entire range of parameter space sampled during the
fitting process. A trade off between accurate dimer properties and sufficiently high surface
energies therefore has to be accepted. The final parameterization of the Fe potential exhibits a
15% too high dimer binding length of 2.29 Å but in turn yields acceptable surface energies.

An essential feature of the iron phase diagram is the α–γ transition. A correct description
of this transition in classical molecular dynamics simulations is only possible if the missing
contributions of the magnetic entropy are accounted for. By following the method described
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Figure 3. Enthalpy and entropy contributions to the Gibbs free energy difference 	G = G(fcc) −
G(bcc) between the fcc and bcc phases of the iron potential developed in this work.

Table 1. Final parameter set of the analytic bond-order potential for iron.

Parameter Value

D0 (eV) 1.5
r0 (Å) 2.29

β (Å
−1

) 1.4
S 2.069 3109
γ 0.011 5751
c 1.289 8716
d 0.341 3219
h −0.26

2μ (Å
−1

) 0.0
R (Å) 3.15
D (Å) 0.2

in the appendix, the temperature dependence of the Gibbs free energy difference 	G =
G(fcc) − G(bcc) has been calculated for different trial parameterizations. The general shape
of the 	G curve was found to be universal for the region of parameter space sampled. It is
plotted as an example for the final parameterization of the ABOP in figure 3, together with the
contributions from enthalpy and entropy. After an initial decrease, 	G reaches a minimum at
intermediate temperatures and increases again up to the melting point. Although, in general, the
	G curve does not give rise to a bcc–fcc phase transition for an arbitrary parameterization, this
general shape suggests the following procedure for fitting the potential to the α–γ transition.
The missing contributions of the magnetic entropy can be compensated purely by vibronic
contributions if the fcc–bcc energy difference 	E is regarded as an adjustable parameter
allowing one to shift the 	G curve until a phase transition is located in the correct temperature
regime. The potential is then regarded as an effective energy function that best describes the
behaviour of the real iron system.

In practice, the fitting procedure proved to be more complex, since a change in 	E does
not only shift the 	G curve, but the new parameter set can also lead to a change in the slope of
	G over T . A trial and error process therefore had to be adopted. The final best-fit parameter
set developed by this method is given in table 1.
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Table 2. Comparison of structural and cohesive properties of Fe in various phases from calculation
and experiment. Errors are given in round brackets. Values in square brackets are rescaled to the
experimental atomic volume of bcc Fe. For the DFT calculations, the parameters are given for the
lowest-energy magnetic configuration, as indicated. rb: dimer bond distance (Å), Eb: dimer binding

energy (eV/atom), ω0: dimer vibration frequency (cm−1), V : equilibrium volume (Å
3
/atom), a0:

lattice constant (Å), c/a: axial ratio, Ec: cohesive energy (eV/atom), 	E: energy difference
(eV/atom) to ground state (FM bcc), 	EBain: energy barrier (meV/atom) between fcc and bcc
phase along Bain path, B , B ′: bulk modulus (GPa) and its pressure derivative, ci j : elastic constants
(GPa).

Literature
PAW GGA–DFT Simonelli Ackland Mendelev Dudarev
This work Experiment Theory Ref. [6] Ref. [7] Ref. [10] Ref. [11] ABOP

Dimer
rb 2.02a 2.01e 2.11 2.35 2.19 2.24 2.29
Eb 1.04b, 1.14c 1.65e 4.12 2.86 3.01 4.44 1.50
ω0 299d 397e 350(10) 293 305(5) 510(10) 239

Diamond (Fd3̄m), non-magnetic
V 14.31 [14.74] 21.70 23.46 19.82 24.17 21.45
a0 4.856 [4.904] 5.578 5.726 5.413 5.783 5.557
	E 1.17 1.43 1.69 1.42 1.48 2.13

Simple cubic (Pm3̄m), ferromagnetic
V 13.26 [13.66] 13.42 12.79 11.27 10.89 14.13
a0 2.367 [2.390] 2.376 2.339 2.24 2.216 2.417
	E 0.75 0.80 1.08 0.71 0.81 1.15

Body-centred cubic (Im3̄m), ferromagnetic
V 11.36 [11.70] 11.70f 11.78 11.77 11.64 11.78 11.70
a0 2.832 [2.860] 2.860f 2.866 2.866 2.855 2.866 2.860
Ec −4.28g −4.28h −4.280 −4.316 −4.127 −4.316 −4.280
B 189 169i 178 178 178 173 169
B ′ 5.1 4.5 4.8 1.5 −1 4.6
c11 277 226i 242 243 243 243 225
c12 147 140i 146 145 145 138 142
c44 96 116i 112 116 116 122 126

Face-centred cubic (Fm3̄m), anti-ferromagnetic
V 10.55 [10.87] 11.30f 12.07 12.45 12.24 11.74 11.77
a0 3.482 [3.516] 3.562f 3.641 3.680 3.658 3.608 3.611
	E 0.11 0.06j 0.026 0.054 0.121 0.086 0.030
	EBain 45k 4 8 0.7 12 36
B 199 133l 140 144 49 130 164
B ′ 5.5 5.9 1.0 11 4.9 4.6
c11 309 154l 160 187 67 175 204
c12 152 122l 130 121 40 108 144
c44 201 77l 101 98 10 99 101
Hexagonal close-packed (P63/mmc), non-magnetic
V 10.18 [10.48] 12.07 12.43 12.24 11.75 11.77
a0 2.459 [2.484] 2.574 2.600 2.607 2.552 2.555
c/a 1.58 1.633 1.633 1.595 1.633 1.63
	E 0.06 0.026 0.054 0.117 0.086 0.027

a Reference [30]. b Reference [31]. c Reference [32]. d Reference [33].
e Reference [34]. f Reference [29] Lattice constant extrapolated to 0 K. g Value taken from experimental data.
h Reference [35]. i Reference [36]. j Reference [37].
k Reference [38]. l Reference [39] Phonon dispersion measurement at 1428 K.
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3. Comparison of the ABOP with existing EAM potentials

In the following, the predictions of the ABOP for an extensive set of properties are compared to
reference values from experiment and simulation. The performance of the ABOP is discussed
in comparison with the EAM potentials by Simonelli [6], Ackland [7], Mendelev [10] and
Dudarev [11].

3.1. Dimer and bulk properties

The dimer properties, the cohesive energies and structural parameters of iron in the diamond,
sc, bcc, fcc and hcp structures, as well as the elastic constants of the bcc and fcc structures as
predicted by the ABOP and EAM potentials, are compared in table 2 with reference data from
literature and total-energy calculations.

All potentials predict a dimer binding length higher than the experimental value of
rb = 2.0 Å [30]. The values range from 2.11 Å for the Simonelli potential up to 2.35 Å for
the Ackland potential. The ABOP also gives a rather high rb of 2.29 Å. As mentioned in the
description of the fitting process, this deviation is a necessity for obtaining acceptable surface
energies with the ABOP. With 1.50 eV, the dimer binding energy is well reproduced by the
ABOP: the reference values scatter between 1.04 and 1.65 eV [31, 34]. In contrast, all EAM
parameterizations systematically overestimate the dimer binding energy by at least a factor 2.

The ABOP was fitted exactly to the experimental reference data on the cohesive energy,
lattice constant and elastic constants of the ground-state bcc structure. These parameters are
therefore reproduced with good accuracy; only the elastic constant c44 is slightly too high.
Deviations of the EAM potentials from this basic experimental data occur for several reasons.
No reference data for the cohesive energy of bcc iron are given in the paper by Ackland et al;
instead, the reported value of −4.316 eV/atom is the cohesive energy obtained from their
potential [7]. This value has then been used as a reference in the works of Dudarev et al [11]
and Mendelev et al [10]. For achieving a better agreement of other parameters with experiment,
the latter potential was fitted with only little weight on the cohesive energy, explaining the value
of −4.127 eV/atom. The deviations of the elastic constants of the EAM potentials from the
experimental values given in table 2 mainly arise from the utilization of different reference
values. The deviations therefore give no indication of the quality of the potentials; they rather
deliver insight on the scattering of the experimental data. Fitting the energy–volume curve of
bcc Fe obtained from the Dudarev potential to the Birch–Murnaghan equation of state reveals,
however, a negative pressure derivative of the bulk modulus, which implies that an expansion
of the bcc crystal from the equilibrium volume requires a higher energy than a compression.
As shown in section 3.3, the Dudarev potential consequentially possesses a negative expansion
coefficient.

In the case of γ -iron, all potentials produce too high equilibrium atomic volumes. The
ABOP (11.77 Å

3
) and the Dudarev (11.74 Å

3
) potential are closest to the reference value of

11.30 Å
3
. Also, only in the case of the Dudarev potential, the fcc structure has an at least

slightly lower atomic volume than the bcc structure. In contrast, the Ackland (12.45 Å
3
) and

Mendelev (12.24 Å
3
) potentials severely overestimate the atomic volumes. Here it is to be said

that Mendelev et al used a reference value of 3.6583 Å for the lattice constant of fcc iron at
0 K, obtained from first-principles calculations performed as a part of their work in [10]. This
value is, however, already larger than experimental results for the lattice constant of γ -iron at
room temperature (3.569 Å; see [29] and references therein).

The elastic constants of γ -iron predicted by the ABOP are 20%–30% higher than the
reference values extracted from phonon dispersion measurements at 1428 K [39]. On the other
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hand, the elastic constants remain markedly below the values obtained from DFT calculations.
Considering the expected softening of the crystal at elevated temperatures, and taking into
account that GGA–DFT calculations tend to overestimate the elastic constants of iron, it is
reasonable to obtain elastic constants that lie between the high-temperature experimental values
and the ab initio data. Apart from the Mendelev potential, the EAM potentials also yield
fcc elastic constants of roughly the same magnitude. The elastic constants of the Mendelev
potential are undoubtedly too low. With c44 being only 10 GPa, the fcc structure is close to
being mechanically unstable.

The structural energy difference 	E between fcc and bcc iron predicted by the potentials
ranges from 0.026 eV/atom (Simonelli) and 0.030 eV/atom (ABOP) up to 0.121 eV/atom
for the Mendelev potential. During the fitting process of the potentials, different strategies for
determining 	E have been applied. Consequentially, the significance of the final value for 	E
varies between the potentials. In the Simonelli and Ackland potentials, 	E was not explicitly
considered but merely served to render the bcc phase the ground-state structure, i.e. care was
taken that 	E assumed a reasonably positive value. On the other hand, in the case of the
Mendelev and Dudarev potentials, 	E has been fitted to ab initio calculations, eventually
leading to markedly higher values1. Finally, as discussed in section 2.4, during the fitting
process of the ABOP, 	E is considered as an adjustable parameter providing the necessary
flexibility to the effective energy function for reproducing the bcc to fcc phase transition in real
iron. In consequence, the final value of 	E = 0.03 eV/atom is significantly lower than the
reference value from DFT calculations (0.11 eV/atom), as well as the value estimated by a
thermodynamic assessment of the Fe phase diagram (0.06 eV/atom) [37].

For the hcp structure, all potentials produce the same atomic volume as for the fcc structure.
This represents a deviation from the total-energy calculations, which yield an atomic volume
that is smaller than in the case of fcc. Apart from the Dudarev potential, the atomic volume of
the hcp structure is furthermore higher than the atomic volume of the bcc structure. Therefore,
the hcp structure is not correctly reproduced as the high-pressure equilibrium phase at 0 K.
Instead, a negative pressure is required for realizing a transition from the bcc to the hcp phase.
Also, the DFT calculations predict that, at 0 K, the hcp structure is more stable than the fcc
structure. Only the ABOP and the Mendelev potential yield cohesive energies for the fcc and
hcp phases that are in consistency with this finding. For the remaining potentials, the cohesive
energies for the fcc and hcp structures are identical.

At lower coordination, all potentials perform reasonably well in reproducing the cohesive
energy and lattice constant of the sc structure. In contrast, for the diamond structure, all
potentials significantly overestimate the lattice constant on one hand but underestimate the
cohesive energy on the other hand. As previously discussed for the fcc and bcc structures,
magnetic effects have an important influence on the cohesive energy and bond length.
Considering the multiple changes of magnetic ground state in the DFT data when proceeding
from high coordination up to the diamond structure, it is understandable that the potentials
cannot grasp all the resulting effects and the deviations at low coordination are acceptable.

3.2. Bain path

As shown in figure 4, the bcc lattice can be regarded as a tetragonally distorted fcc lattice and
vice versa. A possible transformation path from the bcc to the fcc structure is therefore the

1 The energy difference between the fcc and bcc structures of the Dudarev Fe potential calculated in this work and
listed in table 2 differs from the value given in table 1 of [11]. It is, however, consistent with the energy difference
extracted from figure 4 of [11]. It therefore appears that table 1 of [11] does not contain the properties of the final
parameterization of the Fe EAM potential.
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(a)

(b)

Figure 4. (a) Geometrical correlation between the fcc and bcc unit cells. The fcc structure (open
circles) can be regarded as a tetragonally distorted bcc structure (filled circles) with an axial ratio of
c/a = √

2. (b) Fe Bain path. The energy scale is relative to the ground-state bcc structure of the
respective potentials. Data from DFT calculations are taken from [38].

uniaxial expansion of the bcc unit cell along a 〈100〉 direction, which is also known as the Bain
path. In figure 4, the energetics of this transformation predicted by the analytic potentials is
compared with results from GGA–DFT calculations on ferromagnetic iron taken from [38].
It visualizes the previously discussed energy differences between the fcc and bcc structures
predicted by the analytic potentials. Furthermore, the energy barrier 	EBain that has to be
overcome for a transition from fcc to bcc along the Bain path can be extracted. The value for
	EBain estimated by the DFT calculations is 45 meV/atom. With 	EBain = 36 meV/atom, the
ABOP is closest to this reference value. In contrast, all EAM potentials predict significantly
lower transition barriers. The smallest barrier is given by the Mendelev potential, where 	EBain

is less than 1 meV/atom. In this case, the transition requires almost no activation, making the
fcc phase extremely unstable.

An apparent difference in the Bain paths plotted in figure 4 is the much higher curvature
of the local fcc minimum obtained from DFT calculations as compared to the ABOP. For small
tetragonal distortions of a cubic lattice, the curvature of the energy–strain curve is proportional
to the elastic constant C ′, with C ′ = (c11 − c12)/2. GGA–DFT calculations predict a much
higher C ′ than is justifiable by the experimental data on elastic constants of γ -iron (see table 2).
In contrast, C ′ obtained from the ABOP is in reasonable agreement with the experimental data.
The low curvature of the fcc minimum of the ABOP therefore appears to be more realistic. For
the same reason, obtaining a somewhat smaller barrier 	EBain than the GGA–DFT reference
value also seems to be reasonable.

3.3. Melting properties and thermal expansion

For determining the melting point of Fe at zero pressure, molecular-dynamics simulations of
a solid–liquid interface in the N, P = 0, T ensemble have been performed. For different
temperatures around the expected melting point, the position of the solid–liquid interface was
monitored and the actual melting temperature was found for zero velocity of the interface,
i.e. when the volume fractions of the solid and liquid phases remain constant over the simulation
time of 0.5 ns. The melting point for the ABOP estimated by this method is 2270(20) K, which
is distinctly higher than the experimental value of 1811 K [4]. The Ackland and Dudarev
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potentials give a similar overestimation of the melting point; only the Simonelli and Mendelev
potentials produce melting temperatures of the correct magnitude.

The room-temperature (RT) linear expansion coefficient αL of bcc iron predicted by the
Simonelli, Ackland and Mendelev EAM potentials is lower than, but reasonably close to,
the experimental value of 11.8 × 10−6 K−1 [36]. In accordance with a negative pressure
derivative of the bulk modulus (see table 2), the Dudarev potential possesses a negative linear
thermal expansion coefficient of −6 × 10−6 K−1. The ABOP features a rather low αL of only
2.1 × 10−6 K−1. This shortcoming of the ABOP is a compromise that has to be accepted
for fitting the potential to the bcc to fcc phase transition. Preliminary parameterizations of
the Fe potential having a higher fcc to bcc energy difference 	E than the final potential, and
consequently not showing a transition between the two phases, displayed expansion coefficients
closer to the experimental value. A reduction of 	E , while remaining in the same region of
parameter space, is then observed to be accompanied by a lowering of αL.

The expansion coefficient for γ -iron has been evaluated at RT and 1500 K, the last
temperature lying within the stability region of the fcc phase. Compared to the experimental
values, the potentials underestimate the thermal expansion by more than a factor of 2.
Interestingly, in qualitative agreement with experiment [29], the ABOP shows a smaller
expansion coefficient for γ -iron at high temperatures than at room temperature.

A deficiency of the potentials by Dudarev and Mendelev in describing fcc iron is revealed
when simulating the fcc structure at finite temperatures. At temperatures as low as 200 K,
the fcc structure does not remain stable. Instead, a transition to a twinned bcc structure is
observed after just a few picoseconds. In consequence, thermal properties of the fcc phase
cannot be evaluated for these potentials. In general, such a behaviour would not present a
failure of the potentials, if restricted to the low-temperature regime where the bcc phase is
the thermodynamically stable phase in the real iron system. The instability of the fcc phase
remains, however, intact up to the respective melting points of the potentials. In the case of
the Mendelev potential, this instability can be explained both by the low elastic constants of
the fcc structure (see table 2) and by the almost non-existent barrier between the fcc and bcc
phases when following the Bain path (see figure 4). Instead, the Dudarev potential possesses
a distinctive barrier of 12 meV in the Bain path. This barrier is larger than in the case of the
Simonelli and Ackland potentials, both showing a thermally stable fcc structure. The Bain
path does therefore not provide an explanation for the thermal instability of the fcc structure in
the Dudarev potential. Also, the elastic constants of the fcc phase are reasonably high and
do not give an indication for an instability. The energy function of the Dudarev potential
therefore has to provide another artificially low energy path connecting the fcc phase with
the bcc phase.

3.4. BCC to FCC phase transition

Whether or not the analytic iron potentials reproduce the bcc α-iron to fcc γ -iron phase
transition has been examined by calculating the fcc to bcc Gibbs free energy difference up to the
melting point of the respective potentials. As described in the appendix, the Gibbs free energies
of both phases at a temperature T0 can be determined by the coupling-parameter method [52].
The temperature dependence of the Gibbs free energy is then obtained by integrating the Gibbs–
Helmholtz equation.

The lack of a thermally stable fcc phase makes these calculations redundant for both the
Mendelev and Dudarev potentials. For the remaining potentials, the fcc to bcc Gibbs free
energy difference 	G is plotted in figure 5. Starting from the respective 0 K structural energy
difference 	E , all potentials feature an initial decrease of 	G with increasing temperature.
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Figure 5. Gibbs free energy difference between the Fe fcc and bcc phases, as obtained from different
interatomic potentials. Open circles indicate the melting points of the respective potentials.

However, a bcc to fcc phase transition is absent for both the Simonelli and the Ackland EAM
potentials, with 	G remaining positive up to the melting temperature.

In the case of the Ackland potential, Gibbs free energy calculations have already been
published by Lopasso and co-workers in [53]. The same methods for calculating free energies
as in the present work were used, only with the coupling-parameter method implemented
in a MD instead of a Monte Carlo (MC) simulation. Their results slightly differ from the
calculations performed in this work: the calculations of Lopasso et al do predict the presence
of a bcc to fcc transition at 2343 K, located just below the somewhat higher melting temperature
of 2396 K found by their method. However, applying their increased melting temperature to
the 	G curve in figure 5 would still not give rise to a thermodynamic stability of fcc iron from
our calculations. According to the Gibbs free energy calculations performed in this work, the
Ackland potential gives a 	G that is still larger than 8 meV/atom at 2400 K. As described
in the appendix, by double checking the results, any presence of systematic errors in the
implementation of the coupling-parameter method or the integration of the Gibbs–Helmholtz
equation in this work can be ruled out. In contrast, a possible source for the discrepancies
between both calculations can be finite-size effects. In [53], the simulation cells consist of 686
atoms for the bcc structure and 500 atoms for the fcc structure. The simulations in the present
work are performed with 1024 atoms for the bcc structure and 1008 atoms for the fcc structure.
However, it should be noted that an analysis of finite-size effects performed as part of this work
gives a difference of less than 1 meV/atom for 	G at 2100 K when applying both sets of cell
sizes. Finite-size effects might, however, be of a different magnitude in an MD implementation
of the coupling-parameter method, as done in [53].

The same authors also recently published calculations of Gibbs free energies for the
Simonelli EAM potential [54]. Here, they find in agreement with our results that the bcc
phase remains the stable solid phase up to the melting point. The melting point obtained
from their Gibbs free energy calculations of 2103 K is, however, significantly higher than
the value found by the solid–liquid interface method of 1910(20) K. Also, their finding that
the fcc structure is thermally unstable in simulations above room temperature (identical to
the thermal instability of fcc iron found for the Mendelev and Dudarev potentials) cannot be
confirmed from the simulations of the present work. The sources for these discrepancies remain
unclear.
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Figure 6. Evolution of reduced enthalpy, entropy and Gibbs free energy difference between fcc and
bcc iron over temperature, as obtained from the ABOP and from a thermodynamic assessment of the
Fe phase diagram [37]. For better qualitative comparison, all energies are scaled by the reciprocal
0 K structural energy difference between the fcc and bcc phases.

As shown in figure 5, only the ABOP succeeds in reproducing the alternating phase
stability of bcc and fcc iron. Here, the bcc to fcc phase transition is located at 1030 K, which is
in good agreement with the real transition temperature of 1184 K [4]. A remarkable feature of
the ABOP is furthermore the rise of 	G at temperatures above 1500 K. This increase eventually
leads to a stabilization of the bcc over the fcc phase again at 2210 K, just before the potential
reaches its melting point at 2270 K. This behaviour is consistent with the γ -iron to δ-iron phase
transition in the real iron system, located however at 1665 K [4].

The contributions of entropy and enthalpy to the temperature evolution of 	G are plotted
in figure 6, in comparison with data obtained from a thermodynamic assessment of the iron
phase diagram [37]. The 0 K structural energy difference between fcc and bcc iron of
	E = 60 meV/atom obtained by the latter method is twice as high as the value from
the ABOP. For a better visualization of the general trends obtained from both methods, all
energies in figure 6 are therefore scaled by a factor 1/	E . For the absolute values, see figure 3
and [37]. The qualitative agreement between both methods is remarkable. The ABOP not only
reproduces the phase transitions in itself, but also the correct ratios of the entropy and enthalpy
contributions to 	G. After a slight increase at lower temperatures, the enthalpy difference
	H decreases up to the melting point, eventually becoming negative. At the α to γ transition
temperature, however, 	H preserves a positive value. Instead, it is the excess of entropy
of the fcc phase that accounts for the phase transition. After an initial decrease, the entropy
contribution −T	S reaches a minimum around 800 K and finally assumes positive values
at temperatures above 1500 K. Again, it is this contribution to 	G that overcompensates the
negative 	H , leading to the renewed stability of the bcc phase in the temperature regime just
below the melting point.

The excellent performance of the ABOP in reproducing the alternating relative
thermodynamic stabilities of the bcc and fcc phases shows that analytic interatomic potentials
can be successfully applied for describing complicated systems. Care must, however, be taken
to identify shortcomings of the potential function in describing all contributions to energy
and entropy present in the real system. As is shown in the present case of magnetic iron, a
compensation of missing contributions is possible by regarding the potential as an effective
energy function, which requires a consistent scaling of structural energy differences.
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Figure 7. Phonon dispersion of bcc α-Fe as calculated from the ABOP potential developed in this
work. Black dots denote experimental data points [55].

3.5. Surfaces and stacking-faults

The energies of planar defects like low-index surfaces and stacking-fault configurations
obtained from the ABOP and EAM potentials are compared with reference values from
experiment and theory in table 3.

The different potentials produce very similar results for the relaxed low-index surface
energies of bcc, as well as fcc iron. For bcc iron, surface energies are available both from
experiment [48] and theory [49]. Compared to these reference values, it is evident that the
surface energies of the potentials are on average 30%–40% too small.

The unstable generalized stacking-fault energy γ USF has been examined for different slip
systems. The fault energies are in good overall agreement with data from first-principles
calculations [50]. The lowest activation for slip is found in the (110)[11̄1] system. However,
all potentials overestimate the value for the respective γ USF.

3.6. Phonon dispersions

The phonon dispersions for bcc as well as fcc Fe predicted by the ABOP are shown in figures 7
and 8 together with data points from experiment [39, 55]. An inspection of figure 7 reveals an
excellent agreement of the bcc phonon dispersion with the reference data.

The phonon dispersion of fcc iron has been measured at 1428 K [39]. For consistency,
the phonon dispersion of fcc iron of the ABOP has been calculated at the 1428 K atomic
volume of 12.27 Å

3
/atom. As shown in figure 8, the phonon frequencies are somewhat higher

than the experimental reference data. This difference can be attributed to the fact that the
phonon softening is underestimated because of the weak lattice expansion predicted by the
potential.

Not shown are the phonon dispersions of the EAM potentials. In general, all EAM
potentials perform well in reproducing the phonon dispersion of the bcc phase. Also, similar
to the ABOP, higher phonon frequencies than in the 1428 K reference data are found for the
fcc phase. The only exception is the Mendelev potential, where, in line with the low elastic
constants, the phonon frequencies of the fcc phase are significantly underestimated.
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Table 3. Comparison of thermal, point defect and surface properties of bcc and fcc Fe as obtained
from analytic potentials with literature data. Errors are given in round brackets. Curly brackets
denote values taken from the original publications deviating from our calculations. Tm: melting
point (K), αL: coefficient of linear thermal expansion (10−6 K−1), 	E f

v: vacancy formation energy
(eV), 	Vv: vacancy relaxation volume (in units of atomic volume), 	Em

v : vacancy migration
energy, 	E f

i : interstitial formation energy (eV), 	V f
i : formation volume of the lowest-energy

interstitial (in units of atomic volume), 	Em
i : interstitial migration energy (eV), Ed〈uvw〉: threshold

displacement energy in direction 〈uvw〉 (eV), Ed
av: threshold displacement energy averaged over all

directions (eV), γ(hkl) : energy of (hkl)-surface (meV Å
−2

), γ USF
(hkl)[uvw]: relaxed unstable stacking

fault energy for (hkl)[uvw] slip system (J m−2).

Literature

Experiment Theory Simonelli Ackland Mendelev Dudarev ABOP

Tm 1811a 1910(20) 2340(20) 1760(30) 2160(20) 2270(20)

Body-centred cubic (Im3̄m)
αL (RT) 11.8b 8.4 9.4 8.4 −6.0 2.1
	E f

v 1.59–1.89a 1.63 1.70 1.71 {1.84} 1.86 {1.97} 1.56
	Vv −0.19 −0.18 −0.23 −0.41 −0.37
	Em

v 0.55a 0.46 0.63 0.47 0.58 0.57

	E f
i,〈110〉 3.41c, 3.64d 3.67 4.87 3.50 3.65 4.19

	E f
i,〈111〉 4.11c, 4.34d 3.54 5.01 3.99 4.24 4.59

	E f
i,〈100〉 4.37c, 4.64d 4.57 6.10 4.32 4.58 5.51

	V f
i 1.1a 0.2 0.76 0.22 −0.57 0.37

	Em
i 0.25–0.30a 0.03 0.04 0.18 0.15 0.17

Ed〈100〉 17e, 20f 15g h 17g 15g 15i

Ed〈110〉 >30e, 30f 27g h 31g 27g 23i

Ed〈111〉 20e 19g h 35g 25g 19i

Ed
av 42.4g h 44.8g 36.9g 36.7i

γ(100) 150j 143k 102 113 111 112 104
γ(110) 150j 142k 90 99 103 101 85
γ(111) 150j 157k 112 125 125 125 115
γ(211) 150j 103 114 118 116 104

γ USF
(010)[001] 1.87l, 1.79m 2.09 2.35 1.85 2.20 2.15

γ USF
(110)[001] 1.43l, 1.40m 1.76 2.22 1.75 2.05 1.93

γ USF
(110)[11̄1] 0.59l, 0.47m 0.74 0.90 0.66 0.90 0.90

Face-centred cubic (Fm3̄m)
αL (RT) 24.5n 9.0 2.0 10.5
αL(1500 K) 23.3n 10.1 6.9 7.7
	E f

v 1.71o 1.78 1.92 1.75 1.95 1.92
	V f

v −0.11 +0.91 −0.37 −0.10 −0.26
	Em

v 0.27 0.30 0.32

	E f
i,〈100〉 3.18 3.63 3.03 3.35

	E f
i,〈111〉 3.28 3.85 2.98 3.80

	V f
i 0.38 0.10 0.56 0.58

	Em
i 0.13 0.21 0.40

γ(100) 94 104 98 102 103
γ(110) 102 112 107 109 115
γ(111) 82 88 90 90 87

a Reference [4]. b Reference [36]. c Reference [40]. d Reference [41]. e Reference [42]. f Reference [43].
g Reference [44]. h Repulsive part by Becquart et al, Reference [45, 46]. i Reference [47]. j Liquid surface tension
measurements, Reference [48]. k Reference [49]. l Spin-polarized LDA, Reference [50]. m Spin-polarized GGA,
Reference [50]. n Reference [29]. o Reference [51].
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Figure 8. Phonon dispersion of fcc γ -Fe as obtained from the ABOP at the 1428 K atomic volume

of 12.27 Å
3
/atom. Black dots denote experimental data points measured at 1428 K [39].

3.7. Point defects

Properties of point defects in bcc and fcc iron as predicted by the analytic potentials are listed
in table 3, together with reference values from the literature.

3.7.1. Static properties. BCC α-iron. The bcc vacancy formation energies of all potentials
considered in this work lie roughly within the scattering range of the experimental data between
1.59 and 1.89 eV [4], with the ABOP (1.56 eV) marking the lower boundary and the Dudarev
(1.86 eV) potential marking the upper boundary.

The energetic ordering of self-interstitial (SI) configurations represents a peculiarity of the
bcc Fe system compared to other bcc transition metals [56]. In consistency with experimental
findings [4], ab initio calculations predict the 〈110〉 dumbbell configuration as the most stable
SI defect in bcc iron [40, 41]. Both calculations concordantly estimate the energy difference to
the next stable 〈111〉 dumbbell configuration to be 0.7 eV. With the ab initio data at hand, the
more recent Fe EAM potentials by Mendelev and Dudarev have been fitted to reproduce these
interstitial properties [10, 11]. Both potentials yield the 〈110〉 as the most stable configuration
with the formation energy close to the reference values. The energy difference to the 〈111〉
dumbbell is 0.5 and 0.6 eV, respectively. The Ackland potential also reproduces the correct
ordering of interstitial configurations; the formation energies are, however, significantly higher
than the ab initio data. Finally, the Simonelli potential falsely predicts the 〈111〉 dumbbell as
the energetically most favourable configuration.

Regarding energetics only, the Dudarev EAM potential seems to provide a good
description of SI defects. However, this potential yields negative formation volumes for all
interstitial configurations considered. This finding puts into question whether this potential is
able to give a physically meaningful description of the relaxation properties.

The ABOP developed in the present work reproduces the correct ordering of SI
configurations. With 4.19 eV, the formation energy of the 〈110〉 dumbbell is somewhat higher
than the reference values of 3.41 [40] or 3.64 eV [41], but still lower than the value obtained
from the Ackland potential. The energy difference to the 〈111〉 dumbbell is 0.4 eV. For the
〈110〉 dumbbell, the ABOP yields an SI formation volume of 0.37 atomic volumes.

FCC γ -iron. For fcc iron, experimental data are only available for the vacancy
formation energy, which has been determined by Kim and Buyers by positron annihilation
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Figure 9. Temperature dependence of vacancy and interstitial diffusivities in bcc and fcc iron as
predicted by the analytic bond-order potential for iron developed in this work. The simulations
were carried out in the N, V, E ensemble using periodic cells containing one defect in 8 × 8 × 8 or
7 × 7 × 7 unit cells for bcc and fcc, respectively.

spectroscopy [51]. Their result for the formation energy is 1.71 eV. The magnitude of this
value is well reproduced by all Fe potentials.

For SI defects in fcc iron, the ABOP as well as the Simonelli and Ackland potentials predict
the 〈100〉 dumbbell as the lowest-energy configuration. In contrast, with the Dudarev potential
the 〈111〉 dumbbell has a slightly lower energy than the 〈100〉 dumbbell. The SI formation
energy predicted by the potentials varies between 2.98 and 3.63 eV, with the ABOP lying in
the middle of this interval. For the Mendelev potential, the fcc structure does not remain stable
when inserting an SI atom and no values can be given.

3.7.2. Dynamic properties. The diffusivity of point defects has been calculated using MD
simulations and monitoring the mean-square displacement over an extended temperature range.
The simulations were carried out in the N, V , E ensemble, because the scaling of velocities and
positions by the utilization of thermostats and barostats can falsify the dynamics of the atoms.
Therefore, for each temperature, the size of the simulation box was first equilibrated in an
N, P = 0, T ensemble calculation. Fixed at the equilibrated volume, the kinetic energy of
the atoms was then equilibrated in an N, V , T run. Finally, the mean-square displacements
〈R2〉 were followed over a period of time τ in the N, V , E ensemble. The diffusivity D is
given by the Einstein–Smoluchowski equation in three dimensions: 〈R2〉 = 6Dτ . Migration
energies have been obtained by fitting Arrhenius laws to the accumulated diffusivity data. As
an example, the diffusivities of the ABOP are plotted in figure 9.
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BCC α-iron. The vacancy migration energy 	Em
v in bcc Fe obtained by this method

is 0.57 eV for the ABOP, in perfect agreement with the experimental value of 0.55 eV. The
vacancy migration energies of the EAM potentials have approximately the same magnitude,
the Simonelli potential (0.46 eV) giving the lowest value and the Ackland potential (0.63 eV)
giving the highest value. The migration energies obtained by the dynamical method are
significantly lower than the values given by the authors of the EAM potentials in the respective
publications (0.78, 0.62 and 0.84 eV, for the Ackland, Mendelev and Dudarev potential). The
reason for this is that, in the original publications, 	Em

v has been determined by employing
purely static calculations, where an atom is displaced from its original position to the position
of the vacancy and the maximum energy along this path is taken as the migration barrier. It is
noteworthy that the dynamical approach for calculating 	Em

v is usually more reliable and, in
the present case, consistently leads to a better agreement with experiment for all potentials.

For the migration energy of SI atoms in bcc iron, the Simonelli and Ackland potentials
give very low values of only 0.03 eV and 0.04 eV, respectively. In contrast, the Mendelev and
Dudarev potentials as well as the ABOP predict higher migration energies of 0.18, 0.15 and
0.17 eV, respectively. These values are closer, but still below the experimentally determined SI
migration energies of 0.25 to 0.3 e [4]. Again, the migration energies calculated by the dynamic
method are lower than those from static calculations. In [57], Willaime and co-workers
calculated the migration energies for the Ackland and Mendelev potentials and obtained values
of 0.18 eV and 0.31 eV, respectively.

Direction-specific threshold displacement energies needed for displacing an atom in bcc
iron in order to create a stable Frenkel pair have been calculated for the Simonelli, Ackland and
Mendelev potentials by Nordlund et al [44]. Using the same method as in [44], the threshold
displacement energies predicted by the ABOP have also been analysed by Nordlund [47].
The results are summarized in table 3 together with reference data from experiment [43, 42].
Although the 〈110〉 threshold energy is somewhat underestimated, a good agreement of the
ABOP with experiments is achieved. While the minimum threshold is in the 〈100〉 direction,
a clearly higher threshold in the 〈110〉 than in the 〈111〉 direction is obtained. A similar
accordance is only provided by the Simonelli potential. Note however that the latter predicts
the wrong 〈111〉 dumbbell as the most stable interstitial configuration.

FCC γ -iron. Owing to the thermal instability of the fcc phase in the Mendelev and
Dudarev potentials, no point defect migration parameters can be calculated for these potentials.
The Simonelli and Ackland potentials as well as the ABOP show very similar behaviour
concerning the vacancy migration in fcc Fe. The diffusivity data are best fitted by migration
energies of 0.27, 0.30 and 0.32 eV, respectively. For the SI diffusion in fcc Fe, migration
energies of 0.13, 0.21 and 0.40 eV are obtained.

In summary, the ABOP provides an overall excellent description of point defects in bcc
iron. The agreement with respect to static and dynamic interstitial properties is even more
remarkable when considering that none of the SI properties have been used for the fitting
procedure of the potential. For fcc iron, too little experimental data exists for a quantitative
comparison of the potentials with the real γ -iron system. All potentials featuring a thermally
stable fcc phase give, however, a description of point defect properties that is consistent
amongst each other.

4. Summary

We have applied an established bond-order formalism in order to devise a new angular-
dependent interatomic potential for iron. The classical treatment of the iron system that exhibits
phase transitions from the α to the γ and δ phases before melting has been a challenging
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problem for a long time. The new ABOP simultaneously provides an excellent description
of iron both in the bcc and fcc phases. This already marks an improvement over many
analytic potentials fitted solely to the bcc structure, as these often exhibit an instability of
fcc iron at elevated temperatures. Moreover, in order to mimic the magnetic contributions
to phase stability, we consider the static lattice energy difference between bcc and fcc iron as
an adjustable quantity that is used for fitting the difference in Gibbs free energies between the
corresponding phases. To our best knowledge, the present ABOP is therefore the first potential
that properly reproduces the α–γ –δ transition sequence.

Despite these improvements, the complexity of the iron phase diagram still provides room
for further enhancements. In particular, this concerns the description of the hcp phase. The
higher atomic volume of the hcp structure compared to the bcc structure leads to an incorrect
pressure dependence of the iron phase diagram obtained from the ABOP. Note however that,
apart from the Dudarev potential, this problem holds equally true for the EAM potentials
analysed in this work. Also, since all potentials predict identical atomic volumes for the fcc
and hcp structures, the vibrational entropy contributions to the Gibbs free energies of the fcc
and hcp phases are almost identical.

In addition to the phase diagram, the new potential also performs well in describing a large
variety of properties of iron in the bcc and fcc phases. The calculated phonon dispersion curves
for bcc and fcc iron are in good agreement with experimental values. The formation energies
of various point defects compare very well to literature data with the 〈110〉-interstitial as most
stable configuration in bcc iron. Diffusivities obtained from MD simulations are in line with
experimental results. The same holds true for the threshold displacement energy. The Bain path
exhibits an energy barrier for the fcc–bcc transition that is comparable to DFT results, while all
central-force potentials considered here have a lower barrier.

This potential should be suitable for modelling phase transformations, plastic deformation,
fracture and other processes in iron. Because of the modularity of the functional form it can be
extended to account for alloys such as Fe–Ni or Fe–C solid solutions.
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Appendix. Phase stability of bcc and fcc iron

In this work, the coupling-parameter method is employed for calculating the Helmholtz free
energy of a solid at a temperature T0 [52]. An energy function Ũ is constructed by coupling
the potential energy function of the solid of interest U to the potential energy function of a
reference system Uref with known free energy Fref:

Ũ(λ) = (1 − λ)U + λUref. (A.1)

The coupling parameter λ allows a gradual switching between the energy functions contributing
to Ũ . For λ = 0, the interactions of the original solid of interest are recovered, while for λ = 1,
the reference system is obtained. By calculating the work required for switching between the
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reference system and the solid of interest, the Helmholtz free energy of the solid F can be
calculated [52]:

F = Fref −
∫ λ=1

λ=0
dλ〈	U〉λ, (A.2)

with 	U = Uref −U . Here, it is assumed that the switch can be performed reversibly, meaning
that the switching path is free from phase transitions.

For applying the coupling-parameter method to free energy calculations of solids, the
Einstein crystal is a convenient choice for a reference system. The atoms in a classical
Einstein crystal do not interact with each other; instead they are coupled harmonically to their
equilibrium lattice positions r0,i via a spring constant α. The potential energy function Uref of
the Einstein crystal of N atoms then reads

Uref(rN ) = 1
2α

N∑

i=1

(ri − r0,i )
2. (A.3)

Since the atoms in an Einstein crystal do not experience any interatomic interactions, no
pressure can be defined and calculations can only be carried out in the N, V , T ensemble.

In practice, the integrand in (A.2) is evaluated by a series of MC simulations at different
values for λ and the integral is evaluated numerically. For obtaining a smooth integrand
and therefore enhancing the accuracy of the numerical integration, the spring constant α

is adjusted so that the mean-square displacement in the Einstein crystal equals the mean-
square displacement 〈	r 2〉 in the solid: α = 3kBT/〈	r 2〉 [52]. Also for numerical
reasons, the sampling of the integrand in (A.2) is conducted under the fixed centre of mass
constraint [58, 52]. Correcting for finite-size effects and including the fixed centre of mass
constraint, the Helmholtz free energy of the solid of interest can finally be written as [59]

F

NkBT
= −3

2
ln

(
kB

2T 2m

h̄2α

)
− 1

NkBT

∫ 1

0
dλ 〈	U〉λ

− 3

2N
ln

(
α

2πkBT

)
− 3

2N
ln N + 1

N
ln

N

V
. (A.4)

Here, V is the volume of the system, m the atomic mass and h̄ denotes Planck’s constant2.
In order to compare the thermodynamic stabilities of the bcc and fcc phases of the analytic

potentials, the phase with the lower Gibbs free energy G has to be identified. For calculating G
with the Einstein crystal as the reference system, the coupling-parameter method has been used
as described in the following. As a first step, the equilibrium volume V0 at temperature T0 and
zero pressure is determined by an MD simulation run. The spring constant α of the reference
Einstein crystal is then adjusted to the 〈	r 2〉 obtained from a MC simulation at constant V0

and coupling parameter λ = 0. The integrand in (A.2) is then evaluated by a series of fixed
centre of mass MC simulations for λ varying from 0 to 1 with an interval of 	λ = 0.05. The
system sizes used for the calculations are 8 × 8 × 8 unit cells for the bcc lattice and 6 × 6 × 7
unit cells for the fcc lattice, which corresponds to 1024 and 1008 atoms, respectively. For each
λ, the value of 	U(rN ) is sampled over at least 5000 MC steps after allowing the system to
equilibrate for 500 MC steps.

The temperature dependence of the Gibbs free energy can in principle be obtained by
applying the coupling-parameter method at different temperatures T0. Alternatively, integrating
the Gibbs–Helmholtz equation offers a computationally more efficient approach. Once the

2 In [59], Planck’s constant is omitted in the first term on the right-hand side of (A.4).
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Gibbs free energy G0 has been determined by the coupling-parameter method at an arbitrary
T0, the Gibbs free energy at any other temperature is obtained by

G(T )

T
= G(T0)

T0
−

∫ T

T0

H (τ )

τ 2
dτ, (A.5)

where H (τ ) denotes the enthalpy at temperature τ . In this work, Gibbs free energies of the
bcc and fcc iron phases have therefore been determined by applying the coupling-parameter
method once for T0 = 300 K or alternatively 600 K and by integrating the Gibbs–Helmholtz
equation for other temperatures using H (T ) data gained from MD simulations in 25 K intervals
up to the melting point.

The accuracy of the integration and moreover the correctness of the implementation of the
coupling-parameter method can be verified by repeating the coupling-parameter method at a
few selected temperatures, which provides Gibbs free energy data from two (apart from the
value at T0) independent sources. Our calculations show that the maximum deviation between
the two methods for the absolute value of the free energy is less than 5 meV/atom. Furthermore,
for free energy differences between two solid phases, the deviation is less than 0.4 meV/atom.
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[23] Blöchl P E 1994 Phys. Rev. B 50 17953–79
[24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758–75
[25] Perdew J P 1991 Electronic Structure of Solids ed P Ziesche and H Eschrig (Berlin: Akademie)
[26] Birch F 1978 J. Geograph. Res. 83 1257
[27] Herper H C, Hoffmann E and Entel P 1999 Phys. Rev. B 60 3839
[28] Herper H C, Hoffmann E and Entel P 2002 Phase Transit. 75 185
[29] Acet M, Zähres H, Wassermann E F and Pepperhoff W 1994 Phys. Rev. B 49 6012
[30] Purdum H, Montano P A, Shenoy G K and Morrison T 1982 Phys. Rev. B 25 4412
[31] Miedema A R and Gingerich K A 1979 J. Phys. B: At. Mol. Phys. 12 2081
[32] Lian L, Su C X and Armentrout P B 1992 J. Chem. Phys. 97 4072
[33] Moskovits M and DiLella D P 1980 J. Chem. Phys. 73 4917

22

http://dx.doi.org/10.1103/PhysRevB.29.6443
http://dx.doi.org/10.1103/PhysRevB.48.22
http://dx.doi.org/10.1103/PhysRevB.46.2727
http://dx.doi.org/10.1103/PhysRevLett.50.130
http://dx.doi.org/10.1080/01418619708207198
http://dx.doi.org/10.1103/PhysRevB.57.5140
http://dx.doi.org/10.1103/PhysRevB.57.755
http://dx.doi.org/10.1080/14786430310001613264
http://dx.doi.org/10.1088/0953-8984/17/44/003
http://dx.doi.org/10.1016/j.susc.2006.02.010
http://dx.doi.org/10.1103/PhysRevB.64.184102
http://dx.doi.org/10.1103/PhysRevB.55.5570
http://dx.doi.org/10.1016/j.actamat.2005.05.001
http://dx.doi.org/10.1103/PhysRevB.65.195124
http://dx.doi.org/10.1063/1.2149492
http://dx.doi.org/10.1103/PhysRevB.66.035205
http://dx.doi.org/10.1103/PhysRevLett.70.1944
http://dx.doi.org/10.1103/PhysRevB.59.3393
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://www.mm.mw.tu-darmstadt.de/
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.60.3839
http://dx.doi.org/10.1080/01411590290023076
http://dx.doi.org/10.1103/PhysRevB.49.6012
http://dx.doi.org/10.1103/PhysRevB.25.4412
http://dx.doi.org/10.1088/0022-3700/12/13/005
http://dx.doi.org/10.1063/1.463912
http://dx.doi.org/10.1063/1.440021


J. Phys.: Condens. Matter 19 (2007) 326220 M Müller et al

[34] Gutsev G L, Mochena M D, Jena P, Bauschlicher C W Jr and Partridge H III 2004 J. Chem. Phys. 121 6785
[35] Kittel C 1986 Introduction to Solid State Physics 6th edn (New York: Wiley)
[36] Lide D R (ed) 2004 Handbook of Chemistry and Physics 85th edn (Boca Raton, FL: CRC Press)
[37] Chen S and Sundman B 2001 J. Phase Equilib. 22 631
[38] Clatterbuck D M, Chrzan D C and Morris J W Jr 2003 Acta Mater. 51 2271
[39] Zarestky J and Stassis C 1987 Phys. Rev. B 35 4500
[40] Domain C and Becquart C S 2002 Phys. Rev. B 65 024103
[41] Fu C C, Willaime F and Ordejón P 2004 Phys. Rev. Lett. 92 175503
[42] Maury F, Biget M, Vajda P, Lucasson A and Lucasson P 1976 Phys. Rev. B 14 5303
[43] Lomer J N and Pepper M 1967 Phil. Mag. 16 1119
[44] Nordlund K, Wallenius J and Malerba L 2006 Nucl. Instrum. Methods Phys. Res. B 246 322
[45] Becquart C S, Domain C, Legris A and van Duysen J C 2000 J. Nucl. Mater. 280 73
[46] Becquart C S, Domain C, Legris A and van Duysen J C 2001 Mater. Res. Soc. Symp. Proc. 650 R3.24.1
[47] Nordlund K, private communication
[48] Tyson W R and Miller W A 1977 Surf. Sci. 62 267
[49] Spencer M J S, Hung A, Snook I K and Yarovsky I 2002 Surf. Sci. 513 389
[50] Yan J A, Wang C Y and Wang S Y 2004 Phys. Rev. B 70 174105
[51] Kim S M and Buyers W J L 1978 J. Phys. F: Met. Phys. 8 L103
[52] Frenkel D and Smit B 1996 Understanding Molecular Simulation: From Algorithms to Applications (New York:

Academic)
[53] Lopasso E M, Caro M, Caro A and Turchi P 2003 Phys. Rev. B 68 214205
[54] Caro A, Caro M, Lopasso E M, Turchi P E A and Farkas D 2006 J. Nucl. Mater. 349 317
[55] Klotz S and Braden M 2000 Phys. Rev. Lett. 85 3209
[56] Nguyen-Manh D, Horsfield A P and Dudarev S L 2006 Phys. Rev. B 73 020101(R)
[57] Willaime F, Fu C, Marinica M and Dalla Torre J 2005 Nucl. Instrum. Methods Phys. Res. B 228 92–9
[58] Frenkel D and Ladd A J C 1984 J. Chem. Phys. 81 3188
[59] Polson J M, Trizac E, Pronk S and Frenkel D 2000 J. Chem. Phys. 112 5339

23

http://dx.doi.org/10.1063/1.1788656
http://dx.doi.org/10.1361/105497101770332442
http://dx.doi.org/10.1016/S1359-6454(03)00033-8
http://dx.doi.org/10.1103/PhysRevB.35.4500
http://dx.doi.org/10.1103/PhysRevB.65.024103
http://dx.doi.org/10.1103/PhysRevLett.92.175503
http://dx.doi.org/10.1103/PhysRevB.14.5303
http://dx.doi.org/10.1080/14786436708229961
http://dx.doi.org/10.1016/j.nimb.2006.01.003
http://dx.doi.org/10.1016/S0022-3115(00)00029-5
http://dx.doi.org/10.1016/0039-6028(77)90442-3
http://dx.doi.org/10.1016/S0039-6028(02)01809-5
http://dx.doi.org/10.1103/PhysRevB.70.174105
http://dx.doi.org/10.1088/0305-4608/8/5/001
http://dx.doi.org/10.1103/PhysRevB.68.214205
http://dx.doi.org/10.1016/j.jnucmat.2005.11.004
http://dx.doi.org/10.1103/PhysRevLett.85.3209
http://dx.doi.org/10.1016/j.nimb.2004.10.028
http://dx.doi.org/10.1063/1.448024
http://dx.doi.org/10.1063/1.481102

	1. Introduction
	2. Development of a bond-order potential for bcc and fcc iron
	2.1. Bond-order formalism
	2.2. General fitting procedure
	2.3. Total-energy calculations
	2.4. Fitting of the Fe potential

	3. Comparison of the ABOP with existing EAM potentials
	3.1. Dimer and bulk properties
	3.2. Bain path
	3.3. Melting properties and thermal expansion
	3.4. BCC to FCC phase transition
	3.5. Surfaces and stacking-faults
	3.6. Phonon dispersions
	3.7. Point defects
	3.7.1. Static properties.
	3.7.2. Dynamic properties.


	4. Summary
	Acknowledgments
	Appendix. Phase stability of bcc and fcc iron
	References

